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The optimization results by conformational space annealing are presented for an off-lattice protein model
consisting of hydrophobic and hydrophilic residues in Fibonacci sequences. The ground-state energies found
are lower than those reported in the literature. In addition, the ground-state conformations in three dimensions
exhibit the important aspect of forming a single hydrophobic core in real proteins. The energy landscape for the
population of local minima is also investigated.
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I. INTRODUCTION

As functions of proteins are known to be associated with
their three-dimensional structures, understanding the protein
structures is crucial in biological sciences. Unfortunately, the
full three-dimensional structure is known only for far less
than 1% of the proteins whose amino acid sequences are
realized. Therefore, predicting the structure of a protein from
its amino acid sequence is one of the most challenging prob-
lems in computational biology. Based on the minimum free-
energy theory �1�, many authors have developed various
techniques to search for the structures of proteins, such as
simulated annealing �2�, genetic algorithm �3�, simulated
tempering �4,5�, parallel tempering �6,7�, multicanonical
sampling �8,9�, and conformational space annealing �10,11�,
to mention a few.

The native structure of a protein is associated with the
structure of the global minimum of the free energy consisting
of the intramolecular interaction among protein atoms and
the intermolecular interaction between the protein and sur-
rounding solvent molecules �1�. Since solving such a prob-
lem is too difficult for realistic protein models, often highly
simplified but yet nontrivial model proteins are studied in-
stead. The HP model by Dill et al. �12� is one such model, in
which sequences consisting of two types of amino acids, the
hydrophobic �A� and the hydrophilic �B� monomers, are con-
figured as self-avoiding walks on square and simple cubic
lattices. Stillinger and co-workers �13,14� studied a similar
off-lattice AB protein model in two dimensions. Center-
doped sequences and Fibonacci sequences of A and B mono-
mers were studied using a potential including bending energy
and Lennard-Jones energy. Optimal structures were sampled
by the high-temperature Monte Carlo �HTMC� algorithm fol-
lowed by subsequent local energy minimization by quasi-
Newton and conjugate gradient routines �15,16�. Irbäck et al.
have also considered the AB model but with random
sequences to study the thermodynamic properties of folding
to native states, using simulated tempering and multicanoni-
cal ensemble techniques �17–19�. Khokhlov and Khalatur
used a similar model to design proteinlike copolymers con-
sisting of A and B monomers, but with only the hydrophobic
interactions �20�.

Among these, only limited works were devoted to a
search for the optimal structures with lowest energies and,

even for the known minimum-energy conformations, no rig-
orous proof exists that they are indeed the global minimum,
not one of many metastable local minima. Therefore, even
for these simple model proteins, searching for the global
minimum-energy conformations is still nontrivial, mainly
due to the huge number of local minima in the energy land-
scape. Recently, Hsu, Mehra, and Grassberger �21� studied
an off-lattice AB model in two and three dimensions using
the improved pruned enriched Rosenbluth method with im-
portance sampling �referred to as nPERMis� �22�. Fibonacci
sequences of A and B monomers were studied. Low-energy
conformations obtained in this approach are subsequently re-
fined by applying the conjugate gradient descent method to
obtain the final minimum-energy state. They have obtained
putative optimal structures with energies lower than those
reported earlier in Ref. �14�. Liang �23� have studied the
same model by the annealing contour Monte Carlo �ACMC�
algorithm and have reported the structures with even lower
energies in two dimensions. �His work in three dimensions
uses a different energy function from the work of Ref. �21�.�
More recently, Bachmann, Arkin, and Janke employed an
elaborate technique of energy landscape paving minimizer
�ELP�, together with multicanonical sampling, and obtained
even better results �24�. It is thus still not clear if the reported
“optimal” structures are indeed the global minima in the
seemingly complicated energy landscape.

In this paper, the AB model with Fibonacci sequences of
A and B atoms is investigated in two and three dimensions
using the conformational space annealing �CSA� method
�10,11,25–29�. First, we find new candidates for global
minima with energies lower than reported in the literature.
Second, based on more complete conformational analysis on
the energy landscape of the AB model, we find that the
model in two dimensions does not provide low-energy struc-
tures containing single hydrophobic cores often observed in
real proteins. On the other hand, the model in three dimen-
sions provides the lowest-energy structures containing single
hydrophobic cores in contrast with existing results.

II. MODELS AND METHODS

The AB model consists of hydrophobic A monomers and
hydrophilic B monomers. The subclass of Fibonacci se-
quences is defined recursively by
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�0 = A, �1 = B, �i = �i−2 � �i−1, �1�

where the asterisk denotes the concatenation operator. The
present work will focus on the cases of 6� i�9. For i�5,
chains are quite short and their optimal conformations can be
obtained in a trivial fashion �14�. The sequences of chains
are denoted as S13, S21, S34, and S55 for, respectively, i=6, 7,
8, and 9, where the subscripts indicate the sizes of chains.

In two dimensions, we consider the energy functions con-
sisting of the bending energy and the van der Waals interac-
tion energy, given as

E2 = �
i=1

N−2
1

4
�1 + cos �i,i+1� + 4�

i=1

N−2

�
j=i+2

N

�rij
−12 − C2��i,� j�rij

−6� ,

�2�

where �i,j is the angle between the ith and jth bonds and rij is
the distance between monomers i and j. The constant
C2��i ,� j� is +1, + 1

2 , and − 1
2 for, respectively, AA, BB, and

AB pairs, thus yielding a strong attraction between AAs, a
weak attraction for BBs, and a weak repulsion between ABs.
All bond lengths are fixed to unity. In three dimensions, on
the other hand, previous works considered two different en-
ergy functions depending on the authors. Recent work of
Ref. �21� considered the energy function given in Eq. �2�,
neglecting the torsional energies. Since it is known that,
among the two bonded interaction terms the bending energy
is the most crucial �19�, the torsional energy may be ne-
glected for simplicity. However, there are other works �19�,
including the more recent work of Ref. �23�, that considered
the torsional energy implicitly, with the energy function
given as

E3 = �
i=1

N−2

cos �i,i+1 −
1

2 �
i=1

N−3

cos �i,i+2 + 4�
i=1

N−2

�
j=i+2

N

C3��i,� j�

��rij
−12 − rij

−6� , �3�

where C3��i ,� j� is +1 for AA pairs and + 1
2 for BB and AB

pairs. Therefore, all nonbonded interactions are attractive but
AA interactions carry the highest weight. In the present
work, we consider both energy functions. We refer to the
model with the energy function in Eq. �2� as model I, and
that with Eq. �3� as model II. It should be noted that the
energy function of model I is identical to that of Ref. �21�,
while that of model II is equivalent to that of Ref. �23�.

Our global optimization is the CSA method developed by
Lee, Scheraga, and Rackovsky �10�, which unifies the essen-
tial ingredients of the simulated annealing �30�, genetic algo-
rithm �31�, and Monte Carlo with minimization �32�. We
realize that there are other optimization algorithms; however,
we find that CSA is simpler and more efficient for relatively
short chains. For the details of the CSA method, the readers
should consult with the authors’ published papers
�10,11,25–29�.

In our CSA method, 50 random initial conformations are
generated to divide the phase space, and an additional 50
conformations are added whenever the search space is en-
larged. When generating initial conformations in three
dimensions, the inversion symmetry in dihedral angles

����→ �−��� is taken into account. Consequently, the first
dihedral angle �1 is selected randomly in the range of �0,	�,
while the rest N−3 angles are sampled in the whole range of
�0,2	�.

III. RESULTS AND DISCUSSIONS

The full sequences of chains corresponding to �6, �7, �8,
and �9 are given, respectively, as

S13 = ABBABBABABBAB,

S21 = BABABBAB ABBABBABABBAB,

S34 = ABBABBABABBAB BABABBAB

�ABBABBABABBAB,

and

S55 = BABABBAB ABBABBABABBAB

�ABBABBABABBAB BABABBAB

�ABBABBABABBAB.

Table I shows the results of the lowest energy in two
dimensions, along with the values reported in the literature
by HTMC �14�, nPERMis �22�, and ACMC �23� for com-
parison. Our results for S13, S21, and S34 are identical to the
ACMC results but slightly better than the nPERMis results.
This indicates that the results obtained by ACMC and CSA
may indeed correspond to the ground-state energies. How-
ever, for S55, our result for the lowest-energy conformation is
approximately 1% lower in energy compared to that by
ACMC, demonstrating that the best conformation reported
by ACMC corresponds to a metastable local minimum.

Figure 1 depicts the lowest-energy conformations in two
dimensions. The conformations for S13 and S21 are identical
to those by nPERMis and ACMC �see, e.g., Fig. 1 of Refs.
�21,23��, as can be expected from their almost identical
ground-state energies in Table I. This implies that all three
methods find ground-state conformations reasonably well for
these short chains. For S34, on the other hand, the lowest-
energy conformation by CSA is identical to that by ACMC
but is different from that by nPERMis. For S55, the best
conformation obtained by CSA differs from that by ACMC,

TABLE I. The lowest-energies of the two-dimensional AB
model by conformational space annealing �CSA�, in comparison
with those by the high-temperature Monte Carlo method �HTMC�,
the improved pruned-enriched-Rosenbluth method with importance
sampling �nPERMis�, and the annealing contour Monte Carlo
method �ACMC�.

HTMC nPERMis ACMC This work

S13 −3.2235 −3.2939 −3.2941 −3.2941

S21 −5.2881 −6.1976 −6.1979 −6.1980

S34 −8.9749 −10.7001 −10.8060 −10.8060

S55 −14.4089 −18.5154 −18.7407 −18.9110
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as the energy difference between them is significantly large.
Table II shows the lowest energies of our model I and

model II in three dimensions, along with the results by
nPERMis, ACMC, and ELP. Our results for model I are bet-
ter than those of the nPERMis for all cases, with the energy
difference increasing gradually for longer chains, and are
also slightly better than those by ELP except for S55. �For
S55, we believe that we would obtain similar results if we
scanned a wider search space.� It should be noted that all of
our results are consistent with the corresponding results by
ELP within less than 0.2%. Results for model II are also
better than ACMC results except for S13. For S13, our result is
smaller by 0.13% than that of ACMC. �We carried out inten-
sive calculations; however, we were not able to reach the
energy by ACMC.� On the other hand, for other cases, our
results are better by 2% for S21 and up to as much as 11% for
S55. This indicates that the conformations reported earlier in
Ref. �23� for model II are not for the ground states, but are
for metastable local minima. Again, our results are consistent
with the corresponding results by ELP, but our results are
better for longer chains. �Note that our result for S34 is better
by about 5% than that by ELP.�

Figure 2 displays the lowest-energy conformations of
model I. It should be noted that the conformation for S55
obtained by nPERMis contains two hydrophobic cores, while

our results form a single hydrophobic core, in contrast to the
two-dimensional cases, where several clusters of three to five
hydrophobic residues were observed. This suggests that the
AB model in three dimensions with Fibonacci sequences dis-
plays the important feature of forming a single hydrophobic
core as observed in real proteins. Figure 3 shows the ground-
state conformations of model II. It is clear that our result for

FIG. 1. The lowest-energy conformations of the two-
dimensional AB model for �a� S13, �b� S21, �c� S34, and �d� S55. The
filled symbols represent hydrophobic A monomers and the open
symbols hydrophilic B monomers.

TABLE II. The lowest energies of model I and model II for the three-dimensional AB model by CSA, in comparison with those by
nPERMis, ELP, and ACMC, respectively.

nPERMis ELP Model I ACMC ELP Model II

S13 −4.9616 −4.967 −4.9746 −26.5066 −26.498 −26.4714

S21 −11.5238 −12.316 −12.3266 −51.7575 −52.917 −52.7865

S34 −21.5678 −25.476 −25.5113 −94.0431 −92.746 −97.7321

S55 −32.8843 −42.428 −42.3418 −154.5050 −172.696 −173.9803

FIG. 2. The stereographic views of the lowest-energy conforma-
tions of model I for the three-dimensional AB model for �a� S13, �b�
S21, �c� S34, and �d� S55. The filled cubes represent hydrophobic A
monomers and the open tetrahedrons hydrophilic B monomers.
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S13 is similar to that of ACMC due to almost identical ener-
gies. However, for other cases, the conformations are differ-
ent from those by ACMC, due to considerably different en-
ergies. In all cases, the conformations form a single
hydrophobic core, as for the cases of model I. It should be
noted that the conformations of model II are more compact
than those of model I for the same sequences, due mainly to
the attractive long-range interactions among AB atoms.

We also sample the populations of distinct local minimum
energy conformations and calculated corresponding RMSDs
measured from the global minimum-energy conformation for
each sequence. This enables us to investigate energy land-
scape. In order to describe dimensional differences in energy
landscape for the same energy function, we present the re-
sults of only model I. Figure 4 shows the distributions of the
RMSD versus energy for two and three dimensions. From
the figure, we observe three features that describe the differ-
ences in the results between two and three dimensions. First,
as the chain length increases, the RMSD gaps between the
global minima and the conformations indicated by upper ar-
rows decrease in two dimensions, while they increase in

three dimensions. Second, in two dimensions, there are many
low-energy conformations similar to the global minimum
�i.e., those with small RMSD values�, while in three dimen-
sions there are not many of those in a relative sense. Third, in
two dimensions, many local minima are located close to the
global minima and low-energy conformations are divided
into two groups �particularly for S21�, one with larger RMSD
values and the other with smaller RMSD values, while in
three dimensions, the global minimum is well separated from
the rest of the local minima except for S13. In three dimen-
sions, the global minimum of S13 is not isolated in the plot
but is close to other local minima. The local minima appear
to be divided into several subgroups. It is interesting to ob-
serve that the conformations belonging to the lower two
groups are similar to each other, and the lowest-energy con-
formation found by nPERMis belongs to the group with
RMSD values close to 0.2. For other sequences, i.e., for S21,
S34, and S55, we observe that their global minima are well
separated from the rest. We believe that this would make
searching for the global minimum particularly difficult.

Low-energy conformations with relatively large RMSD
values are also studied. Plotted in Fig. 5 are the conforma-

FIG. 3. The stereographic views of the lowest-energy conforma-
tions of model II for the three-dimensional AB model for �a� S13, �b�
S21, �c� S34, and �d� S55.

FIG. 4. The distribution of RMSD vs energy for low-lying local
minimum-energy conformations for, from top to bottom, S13, S21,
S34, and S55. The RMSD is measured from the lowest-energy con-
formation listed in Tables I and II. The left plots are for two dimen-
sions and the right plots for three dimensions. The conformations
indicated by arrows are shown in Figs. 5 and 6.
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tions in two dimensions; �a�, �c�, �e�, and �g� are for the
smaller values of RMSD corresponding to the lower arrows
in Fig. 4, and �b�, �d�, �f�, and �h� are for the larger values
corresponding to the upper arrows. The conformations look
quite different while their energies are close to each other.
The source for such energetic similarity comes from the fact
that, for each chain, the number and the size of the corre-
sponding hydrophobic clusters are identical �except for S13�.
It should be emphasized that conformations for S55 shown in
Figs. 5�g� and 5�h� are of lower energies than those obtained
earlier by other methods.

Low-energy conformations, which are quite distinct from
the global minima in three dimensions, are plotted in Fig. 6.
They are indicated by arrows in Fig. 4. For S13, since the
conformations in the two low-RMSD groups in Fig. 4 are
similar as mentioned earlier, the minimum-energy conforma-
tion in the group of RMSD values close to 0.6 is shown
instead. All conformations form single hydrophobic cores as
for the global minimum-energy conformations. It should be
noted that the energies of the conformations in the figure are

much lower than the lowest energies obtained by nPERMis
�21� for all cases except S13.

IV. SUMMARY AND CONCLUDING REMARKS

An off-lattice model protein consisting of two types of
monomers, hydrophobic �A� and hydrophilic �B� residues,
with Fibonacci sequences is studied by conformational space
annealing. It is found that some of our results for the ground-
state energies are lower than the best values reported in the
literature for both two and three dimensions �S55 in two di-
mensions and all cases except S55 for model I and S34 and S55
for model II in three dimensions�. Consequently, some of the
present results provide updated candidates for the global
minima. In two dimensions, the conformations of the ground
states form several clusters of three to five hydrophobic resi-
dues, whereas single hydrophobic cores are observed in three
dimensions. Based on this, it is concluded that the AB model
with Fibinacci sequences in three dimensions mimics the real
protein reasonably well, while in two dimensions the model
becomes unrealistic to describe proteins.

FIG. 5. The low-energy conformations of the two-dimensional
AB model with smaller RMSD values �left� and with larger RMSD
values �right�. The sequences, the values of energy, and RMSD are
�a� S13 �−3.2235,0.0081�, �b� S13 �−3.1990,0.6651�, �c� S21

�−6.1911,0.0234�, �d� S21 �−6.1838,0.3368�, �e� S34

�−10.8058,0.0001�, �f� S34 �−10.7883,0.4905�, �g� S55

�−18.8894,0.0426�, and �h� S55 �−18.7786,0.3396�. The dotted
lines superimposed on the left plots represent the lowest-energy
conformations.

FIG. 6. Stereographic views of the low-energy conformations of
model I for the three-dimensional AB model. The conformations are
quite distinct from the lowest-energy conformations shown in Fig.
2. The sequences, the values of energy, and RMSD are �a� S13

�−4.9457,0.5649�, �b� S21 �−12.2912,1.2087�, �c� S34

�−25.4614,1.5718�, and �d� S55 �−42.3037,2.0661�.
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The distributions of the RMSD values from the global
minima are also analyzed as a function of energy. It is
found that in three dimensions there exist at least two distinct
subgroups of local minima, one with larger RMSD
values and the other with smaller RMSD values. In three
dimensions, the lowest-energy conformations are generally
located far away from the majority of conformations.
This situation makes it particularly more difficult to search
for the lowest-energy conformations. The lowest-energy

conformations form single hydrophobic cores as observed in
real proteins.
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